
Parallel Computing 1

CUDA and GPGPU Computing

Wei Wang

Parallel Computing 2

GPGPU Programming
● As GPU is a drastically different from CPU, programming on

GPU requires extra compiler and run-time system support.
● Common programming GPGPU programming frameworks

– CUDA by Nvidia
– OpenCL

● Aimed at providing support for heterogeneous computing on CPU, GPU,
FPGA and DSPs

– OpenACC
● Aimed at providing support for heterogeneous computing with code annotation

similar to OpenMP
– OpenHMPP

● An academia attempt for heterogeneous programming standard

Parallel Computing 3

CUDA

● CUDA Architecture
– Expose GPU parallelism for general-purpose

computing
● CUDA C/C++

– Based on industry-standard C/C++
– Small set of extensions to enable heterogeneous

programming
– APIs to manage devices, memory etc.

Parallel Computing 4

GPGPU is Heterogeneous
Computing

● Users interacts with CPU
– To execute code on GPU, control has to be

transferred from CPU to GPU
● CPU and GPU are two separate devices with

their own memory
– To solve a problem on GPU, data has to be

transferred from CPU to GPU

Parallel Computing 5

GPGPU Execution Flow

1.Copy input data from CPU memory to
GPU memory

CPU

CPU Memory

Global Control Unit

SM SM SM

GPU Memory

Parallel Computing 6

GPGPU Execution Flow cont’d

1.Copy input data from CPU memory to
GPU memory

2.Load GPU program and transfer the
control to GPU to execute

CPU

CPU Memory

Global Control Unit

SM SM SM

GPU Memory

Parallel Computing 7

GPGPU Execution Flow cont’d

1.Copy input data from CPU memory to GPU
memory

2.Load GPU program and transfer the control
to GPU to execute

3.Copy results from GPU memory to CPU
memory

CPU

CPU Memory

Global Control Unit

SM SM SM

GPU Memory

Parallel Computing 8

GPGPU Execution Flow from Code
Perspective

#define N (1024*1024)
 #define M (1000000)

 __global__ void cudakernel(float *buf)
 {
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 buf[i] = 1.0f * i / N;
 for(int j = 0; j < M; j++)
 buf[i] = buf[i] * buf[i] - 0.25f;
 }

 int main()
 {
 float *data; int count = 0;
 float *d_data;
 Data = malloc(sizeof(float)*N);

 cudaMalloc(&d_data, N * sizeof(float));
 cudakernel<<<N/256, 256>>>(d_data);
 cudaMemcpy(data, d_data, N * sizeof(float),
cudaMemcpyDeviceToHost);
 cudaFree(d_data);

 int sel;
 printf("Enter an index: ");
 scanf("%d", &sel);
 printf("data[%d] = %f\n", sel, data[sel]);
 }

Run on CPU

Run on GPU

Run on CPU

GPU Parallel Function

Parallel Computing 9

Some CUDA Terms

● Host: the CPU and its memory (host memory)
● Device: the GPU and its memory (device

memory)
● Device code: code that executes on GPU

Parallel Computing 10

“Hello World” with Device Code

● Compile the code:
– nvcc hello_world.cu -o hello_world.bin
– nvcc is Nvida’s CUDA compiler
– CUDA source code usually have extension name of “cu”, but they are just C code with

CUDA extensions.
● Execute the code:

– Just as execute any executable file:
● $./hello_world.bin

hello_world.cu:
__global__ void mykernel(void) {
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

Parallel Computing 11

The __global__ key world

● CUDA C/C++ keyword __global__ indicates a function that:
– Runs on the device
– Is called from host code
– A device code function is usually called as a compute kernel
– This kernel does nothing, it is only for illustration

● nvcc separates source code into host and device components
– Device functions (e.g. mykernel()) processed by NVIDIA compiler
– Host functions (e.g. main()) preprocessed or compiled by standard host compiler

● gcc, cl.exe
– Error messages may be all from nvcc.

__global__ void mykernel(void) {
}

Parallel Computing 12

Invoking Device Code

● Invoke the device code function by its name
● Triple angle brackets mark a call from host code to

device code
– Also called a “kernel launch”

● That’s all that is required to execute a function on the
GPU!

mykernel<<<1,1>>>();

Parallel Computing 13

Simple Sum With CUDA:
The “Add” Function

● The C code to add two integers:

● The CUDA C code to add two integers:
– Add the __global__ key world
– The “add” function now can be executed on GPU

void add(int *a, int *b, int *c) {
*c = *a + *b;

}

__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;

}

Parallel Computing 14

Simple Sum With CUDA:
Passing Data/Parameters to GPU

● Host and device memory are separate entities
– Device pointers point to GPU memory

● May be passed to/from host code
● May not be dereferenced in host code

– Host pointers point to CPU memory
● May be passed to/from device code
● May not be dereferenced in device code

● Simple CUDA API for handling device memory
– cudaMalloc(), cudaFree(), cudaMemcpy()
– Similar to the C equivalents malloc(), free(), memcpy()

Parallel Computing 15

Simple Sum With CUDA:
Passing Data/Parameters cont’d
int main(void) {

int a, b, c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = sizeof(int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Setup input values
a = 2;
b = 7;

// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// rest of the code on next page

Parallel Computing 16

Simple Sum With CUDA:
Passing Data/Parameters cont’d

// continue from previous slide, after invoking add
// on device

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;
}

● In summary, to process data on GPU:
– Allocate memory on GPU with cudaMalloc
– Copy data to GPU with cudaMemcpy
– Invoke the kernel with data copied to GPU
– After kernel finishes, copy data back to CPU
– Deallocate memory on GPU

Parallel Computing 17

Parallel Vector Addition with CUDA
● Vector addition:

● Parallel vector addition:
– Reuse the “add” function we already have
– Use the “add” function to sum one element from A and one from

B
– Execute these “add” functions in parallel on CUDA using the

massive number of functional units

b c
B C

a
A

Parallel Computing 18

Parallel Vector Addition with CUDA:
Running “add” in Parallel

● How do we run code in parallel on the device?

● Instead of executing add() once, execute N
times in parallel

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// Launch add() kernel on GPU
add<<<N,1>>>(d_a, d_b, d_c);

Parallel Computing 19

Parallel Vector Addition with CUDA:
Make “add” Handle Arrays of Data

● Two vectors will be passed to “add”, how does “add”
know which two integers it should add?

● Each parallel invocation of add() is referred to as a block
– Each invocation can refer to its block index using blockIdx.x

● By using blockIdx.x to index into the array, each block
handles a different index
– similar with thread_id we used in Pthreads

__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

Parallel Computing 20

Parallel Vector Addition with CUDA:
Vector Addition on GPU

● With the above code, each block on the device
executes in parallel:

__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

c[0] = a[0]+b[0] c[1] = a[1]+b[1] c[2] = a[2]+b[2] c[3] = a[3]+b[3]

Block0 Block1 Block2 Block3

Parallel Computing 21

Parallel Vector Addition with CUDA:
The “main” function

● As we are adding vectors, we need to allocate
space for all three vectors in “main”
#define N (2048*2048)
int main(void) {

int a[N], b[N], c[N]; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Setup input values
a = random_N_ints(); b = random_N_ints();

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
// rest of the code on next page

Parallel Computing 22

Parallel Vector Addition with CUDA:
The “main” function cont’d

// continue from previous page

// Launch add() kernel on GPU with N blocks
 add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;
}

Parallel Computing 23

CUDA Threads

● In CUDA, a block can be split into parallel
threads

● We can also use threads, and thread indices to
run “add” in parallel to add two vectors:
– Use threadIdx instead of blockIdx

__global__ void add(int *a, int *b, int *c) {
c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}

Parallel Computing 24

CUDA Threads cont’d

● One small change to invoke “add” in parallel:
// Launch add() kernel on GPU
add<<<N,1>>>(d_a, d_b, d_c);

// Launch add() kernel on GPU
add<<<1,N>>>(d_a, d_b, d_c);

Parallel Computing 25

Grids, Blocks and Threads
● CUDA partition the parallel execution into

grids, thread blocks and threads
– A grid is usually associated with the launch

of a kernel
– A grid can have at most 65535 blocks
– A block can have at most 1024 threads

● GPU scheduler internally handles the
mapping of blocks/threads to SMs

● Block and threads somewhat reflect the
original use of GPU – graphic processing
– Images are processed in blocks
– Each block is parallel processed by threads
– GPU scheduler is designed to understand

this image processing requirement
– Many scientific problems also share this

structure

Parallel Computing 26

Grids, Blocks and Threads cont’d
● Thread: Sequential execution unit

– All threads execute same sequential program
– Threads execute in parallel

● Threads Block: a group of threads
– Executes on a single Streaming Multiprocessor (SM)
– Threads within a block can cooperate

● Light-weight synchronization
● Data exchange

● Grid: a collection of thread blocks
– Thread blocks of a grid execute across multiple SMs
– Thread blocks do not synchronize with each other
– Communication between blocks is expensive

Parallel Computing 27

Indexing Arrays with Blocks and
Threads

● So far we have been using only one thread per
block or using only one block

● For the vector addition problem, how does a
thread determine its correct vector index if
multiple blocks each multiple threads are used?

Parallel Computing 28

Indexing Arrays with Blocks and
Threads: An Example

● For example, assume 8 threads per block:

● For the second thread (thread 1) in the third block
(block 2), it maps to index:
– vector_index = blockIdx.x * block_size + threadIdx.x

 = 2 * 8 + 1 = 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Vector Index

threadIdx.x threadIdx.x threadIdx.x

Thread 1 in block 2 maps to
Vector item 17

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2

Parallel Computing 29

Indexing Arrays with Blocks and
Threads: The New Kernel

● Use the built-in variable blockDim.x for threads per
block:

● Note that, the index computed in this way can also be
viewed as the global index of a thread when all
threads from all blocks are considered.

● There is also a gridDim object that gives the number
of blocks within a grid.

__global__ void add(int *a, int *b, int *c) {
int index = blockIdx.x * blockDim.x + threadIdx.x;

 c[index] = a[index] + b[index];
}

Parallel Computing 30

Indexing Arrays with Blocks and
Threads: The New “main”

● We can now use multiple blocks and threads
#define N (2048*2048)
#define THREADS_PER_BLOCK 512
int main(void) {

int a[N], b[N], c[N]; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Setup input values
a = random_N_ints(); b = random_N_ints();

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
// rest of the code on next page

Parallel Computing 31

Indexing Arrays with Blocks and
Threads: The New “main” cont’d

// continue from previous page

// Launch add() kernel on GPU with N blocks
 add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b,
d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;
}

Parallel Computing 32

The Rational Of Having Threads
● Threads seem unnecessary

– They add a level of complexity
– What do we gain?

● Unlike parallel blocks, threads have mechanisms to:
– Communicate
– Synchronize

● For graphic processing, it usually required to
communicate within a block
– Global communication is less common

Parallel Computing 33

Thread Communications
● Threads within a block

is scheduled by the
GPU to run on SMs that
are directly connected
to the same “shared
memory”

● Other synchronization
mechanisms are also
possible among these
SMs

Parallel Computing 34

An Example of Using Shared
Memory: All-Reduction

● All reduction with sum: sum the values (of a vector)
processed by the threads of a block, and save the
sum into an output vector (similar to
MPI_Allreduce)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Input Vector Index

threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23Output Vector Index

sum sum sum

Parallel Computing 35

An Example of Using Shared
Memory: All-Reduction Algorithm

● Idea of the algorithm:
– Copy the part of array that has to be summed into shared

memory
– Each thread will then read the data from shared memory,

sum them and store the result back to the out vector
● Why shared memory? Why not directly sum the

values from vector?
– Each thread has to read all values to sum them
– It takes more time to read the values from main memory

than from shared cache

Parallel Computing 36

An Example of Using Shared
Memory: All-Reduction Kernel

● The code for the kernel:
__global__ void all_reduce(int *in, int *out) {

int index = blockIdx.x * blockDim.x + threadIdx.x;
// allocate an array in shared memory

 __shared__ int temp[BLOCK_SIZE];

// copy one value into shared memory
temp[threadIdx.x] = in[index];

// sum all values up
int sum = 0;
for(int i = 0; i < blockDim.x; i++)

sum += temp[i];

// output the sum to out array
out[index] = sum;

}

__shared__ keyword
declares a variable
in shared memory

Parallel Computing 37

An Example of Using Shared
Memory: All-Reduction Kernel cont’d
● The code for the kernel:

Race condition: if some
threads haven’t copied their
values then we cannot do
sum. We need a barrier
here.

__global__ void all_reduce(int *in, int *out) {

int index = blockIdx.x * blockDim.x + threadIdx.x;
// allocate an array in shared memory

 __shared__ int temp[BLOCK_SIZE];

// copy on value into shared memory
temp[threadIdx.x] = in[index];

// sum all values up
int sum = 0;
for(int i = 0; i < blockDim.x; i++)

sum += temp[i];

// output the sum to out array
out[index] = sum;

}

Parallel Computing 38

An Example of Using Shared
Memory: All-Reduction Kernel cont’d
● CUDA’s barrier is: void __syncthreads();

__global__ void all_reduce(int *in, int *out) {

int index = blockIdx.x * blockDim.x + threadIdx.x;
// allocate an array in shared memory

 __shared__ int temp[BLOCK_SIZE];

// copy on value into shared memory
temp[threadIdx.x] = in[index];
__syncthreads(); // barrier
// sum all values up
int sum = 0;
for(int i = 0; i < blockDim.x; i++)

sum += temp[i];

// output the sum to out array
out[index] = sum;

}

Parallel Computing 39

Starting Kernels with Multi-
Dimensional Blocks/Threads

● If the block count and threads per block are
integers when launching a kernel, the blocks
and threads are organized as a 1D vector
space.

● To launch 2D or 3D blocks and threads:
dim3 dimGrid(8, 32); // a grid has 8*32 = 256 blocks
dim3 dimBlock(4, 5, 6); // a block has 4*5*6 = 120 threads
myKernel <<<dimGrid, dimBlock>>>(...);

Parallel Computing 40

Dynamic Shared Memory
● In the previous example, we statically declared an

array in shared memory
– i.e., the shared memory is allocated with a compile-time

determined size
– Static shared memory allocation is usually limited to the

case where block count and thread count are known
before hand

● There are cases where block/thread counts are
unknown at compile time, and the size of required
shared memory is only known at run-time

Parallel Computing 41

Allocating and Using Shared
Memory Dynamically

● The size of dynamically allocated shared memory are
passed to GPU as kernel launch parameter

● Dynamically allocated memory is declared in a kernel
with extern key word
__global__ myKernel(...){

…
extern __shared__ int a[];
…

}

Main(){
…
Mykernel<<<gridDim, blockDim, sharedMemSize >>>(...)
…

}

Parallel Computing 42

A Note on the Shared Memory Size

● Shared memory has limited size.
● If a shared object requires more memory than

the physical size of the shared memory, the
shared object has to be put in GPU global
memory.

Parallel Computing 43

Device and Host Key words

● __device__ keyword specifies a function to be
invoked from and executed on GPU

● __host__ keyword specifies a function to be
invoked from and executed on CPU

● A function can have both __device__ and
__host__ keywords.

● __global__ keyword specifies a function to be
invoked from CPU and executed on GPU

Parallel Computing 44

Debugging GPU Programs
● “printf” works in CUDA sm20 and higher architecture

models.
● After executing a kernel, call CUDA APIs to check for errors

– cudaGetLastError
– cudaPeekAtLastError
– CudaGetErrorString

● CUDA-GDB provides debugging support with GUI on Linux
and Mac

● NVIDIA has Nsight debugger for Visual Studio and Eclipse

Parallel Computing 45

Acknowledgement

● Slides are based on “CUDA C/C++ BASICS”,
Cyril Zeller, NVIDIA Corporation,
Supercomputing 2011

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

