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GPGPU Programming
● As GPU is a drastically different from CPU, programming on 

GPU requires extra compiler and run-time system support.
● Common programming GPGPU programming frameworks

– CUDA by Nvidia
– OpenCL 

● Aimed at providing support for heterogeneous computing on CPU, GPU, 
FPGA and DSPs

– OpenACC
● Aimed at providing support for heterogeneous computing with code annotation 

similar to OpenMP
– OpenHMPP

● An academia attempt for heterogeneous programming standard
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CUDA

● CUDA Architecture
– Expose GPU parallelism for general-purpose 

computing
● CUDA C/C++

– Based on industry-standard C/C++
– Small set of extensions to enable heterogeneous 

programming
– APIs to manage devices, memory etc.
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GPGPU is Heterogeneous 
Computing

● Users interacts with CPU
– To execute code on GPU, control has to be 

transferred from CPU to GPU
● CPU and GPU are two separate devices with 

their own memory
– To solve a problem on GPU, data has to be 

transferred from CPU to GPU
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GPGPU Execution Flow

1.Copy input data from CPU memory to 
GPU memory

CPU

CPU Memory

Global Control Unit

SM SM SM

GPU Memory
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GPGPU Execution Flow cont’d

1.Copy input data from CPU memory to 
GPU memory

2.Load GPU program and transfer the 
control to GPU to execute

CPU

CPU Memory

Global Control Unit

SM SM SM

GPU Memory
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GPGPU Execution Flow cont’d

1.Copy input data from CPU memory to GPU 
memory

2.Load GPU program and transfer the control 
to GPU to execute

3.Copy results from GPU memory to CPU 
memory

CPU

CPU Memory

Global Control Unit

SM SM SM

GPU Memory
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GPGPU Execution Flow from Code 
Perspective

#define N (1024*1024)
  #define M (1000000)

  __global__ void cudakernel(float *buf)
  {
     int i = threadIdx.x + blockIdx.x * blockDim.x;
     buf[i] = 1.0f * i / N;
     for(int j = 0; j < M; j++)
        buf[i] = buf[i] * buf[i] - 0.25f;
  }

  int main()
  {
     float *data; int count = 0;
     float *d_data;
     Data = malloc(sizeof(float)*N);

     cudaMalloc(&d_data, N * sizeof(float));
     cudakernel<<<N/256, 256>>>(d_data);
     cudaMemcpy(data, d_data, N * sizeof(float), 
cudaMemcpyDeviceToHost);
     cudaFree(d_data); 

     int sel;
     printf("Enter an index: ");
     scanf("%d", &sel);
     printf("data[%d] = %f\n", sel, data[sel]);
  }

Run on CPU

Run on GPU

Run on CPU

GPU Parallel Function
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Some CUDA Terms

● Host: the CPU and its memory (host memory)
● Device: the GPU and its memory (device 

memory)
● Device code: code that executes on GPU
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“Hello World” with Device Code

● Compile the code:
– nvcc hello_world.cu -o hello_world.bin
– nvcc is Nvida’s CUDA compiler
– CUDA source code usually have extension name of “cu”, but they are just C code with 

CUDA extensions.
● Execute the code:

– Just as execute any executable file: 
● $ ./hello_world.bin

hello_world.cu:
__global__ void mykernel(void) {
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}
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The __global__ key world

● CUDA C/C++ keyword __global__ indicates a function that:
– Runs on the device
– Is called from host code
– A device code function is usually called as a compute kernel
– This kernel does nothing, it is only for illustration

● nvcc separates source code into host and device components
– Device functions (e.g. mykernel()) processed by NVIDIA compiler
– Host functions (e.g. main()) preprocessed or compiled by standard host compiler

● gcc, cl.exe
– Error messages may be all from nvcc. 

__global__ void mykernel(void) {
}
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Invoking Device Code

● Invoke the device code function by its name
● Triple angle brackets mark a call from host code to 

device code
– Also called a “kernel launch”

● That’s all that is required to execute a function on the 
GPU!

mykernel<<<1,1>>>();
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Simple Sum With CUDA:
The “Add” Function

● The C code to add two integers:

● The CUDA C code to add two integers:
– Add the __global__ key world
– The “add” function now can be executed on GPU

void add(int *a, int *b, int *c) {
*c = *a + *b;

}

__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;

}
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Simple Sum With CUDA:
Passing Data/Parameters to GPU

● Host and device memory are separate entities
– Device pointers point to GPU memory

● May be passed to/from host code
● May not be dereferenced in host code

– Host pointers point to CPU memory
● May be passed to/from device code
● May not be dereferenced in device code

● Simple CUDA API for handling device memory
– cudaMalloc(), cudaFree(), cudaMemcpy()
– Similar to the C equivalents malloc(), free(), memcpy()
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Simple Sum With CUDA: 
Passing Data/Parameters cont’d
int main(void) {

int a, b, c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = sizeof(int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Setup input values
a = 2;
b = 7;

// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// rest of the code on next page
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Simple Sum With CUDA: 
Passing Data/Parameters cont’d

// continue from previous slide, after invoking add
// on device

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;
}

● In summary, to process data on GPU:
– Allocate memory on GPU with cudaMalloc
– Copy data to GPU with cudaMemcpy
– Invoke the kernel with data copied to GPU
– After kernel finishes, copy data back to CPU
– Deallocate memory on GPU 
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Parallel Vector Addition with CUDA
● Vector addition:

● Parallel vector addition:
– Reuse the “add” function we already have
– Use the “add” function to sum one element from A and one from 

B
– Execute these “add” functions in parallel on CUDA using the 

massive number of functional units

b c
B C

a
A
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Parallel Vector Addition with CUDA: 
Running “add” in Parallel

● How do we run code in parallel on the device?

● Instead of executing add() once, execute N 
times in parallel

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// Launch add() kernel on GPU
add<<<N,1>>>(d_a, d_b, d_c);



Parallel Computing 19

Parallel Vector Addition with CUDA:
Make “add” Handle Arrays of Data

● Two vectors will be passed to “add”, how does “add” 
know which two integers it should add?

● Each parallel invocation of add() is referred to as a block
– Each invocation can refer to its block index using blockIdx.x

● By using blockIdx.x to index into the array, each block 
handles a different index
– similar with thread_id we used in Pthreads

__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}
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Parallel Vector Addition with CUDA:
Vector Addition on GPU

● With the above code, each block on the device 
executes in parallel:

__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

c[0] = a[0]+b[0] c[1] = a[1]+b[1] c[2] = a[2]+b[2] c[3] = a[3]+b[3]

Block0 Block1 Block2 Block3
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Parallel Vector Addition with CUDA:
The “main” function

● As we are adding vectors, we need to allocate 
space for all three vectors in “main”
#define N (2048*2048)
int main(void) {

int a[N], b[N], c[N]; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size =  N * sizeof(int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Setup input values
a = random_N_ints(); b = random_N_ints();

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
// rest of the code on next page
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Parallel Vector Addition with CUDA:
The “main” function cont’d

// continue from previous page

// Launch add() kernel on GPU with N blocks
 add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;
}
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CUDA Threads

● In CUDA, a block can be split into parallel 
threads

● We can also use threads, and thread indices to 
run “add” in parallel to add two vectors:
– Use threadIdx instead of blockIdx

__global__ void add(int *a, int *b, int *c) {
c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}
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CUDA Threads cont’d

● One small change to invoke “add” in parallel:
// Launch add() kernel on GPU
add<<<N,1>>>(d_a, d_b, d_c);

// Launch add() kernel on GPU
add<<<1,N>>>(d_a, d_b, d_c);
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Grids, Blocks and Threads
● CUDA partition the parallel execution into 

grids, thread blocks and threads
– A grid is usually associated with the launch 

of a kernel
– A grid can have at most 65535 blocks
– A block can have at most 1024 threads

● GPU scheduler internally handles the 
mapping of blocks/threads to SMs

● Block and threads somewhat reflect the 
original use of GPU – graphic processing
– Images are processed in blocks
– Each block is parallel processed by threads
– GPU scheduler is designed to understand 

this image processing requirement
– Many scientific problems also share this 

structure
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Grids, Blocks and Threads cont’d
● Thread: Sequential execution unit

– All threads execute same sequential program
– Threads execute in parallel

● Threads Block: a group of threads
– Executes on a single Streaming Multiprocessor (SM)
– Threads within a block can cooperate

● Light-weight synchronization
● Data exchange

● Grid: a collection of thread blocks
– Thread blocks of a grid execute across multiple SMs
– Thread blocks do not synchronize with each other
– Communication between blocks is expensive
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Indexing Arrays with Blocks and 
Threads

● So far we have been using only one thread per 
block or using only one block

● For the vector addition problem, how does a 
thread determine its correct vector index if 
multiple blocks each multiple threads are used?
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Indexing Arrays with Blocks and 
Threads: An Example

● For example,  assume 8 threads per block:

● For the second thread (thread 1) in the third block 
(block 2), it maps to index:
– vector_index = blockIdx.x * block_size + threadIdx.x

                 = 2 * 8 + 1 = 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Vector Index

threadIdx.x threadIdx.x threadIdx.x

Thread 1 in block 2 maps to
Vector item 17

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2
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Indexing Arrays with Blocks and 
Threads: The New Kernel

● Use the built-in variable blockDim.x for threads per 
block:

● Note that, the index computed in this way can also be 
viewed as the global index of a thread when all 
threads from all blocks are considered.

● There is also a gridDim object that gives the number 
of blocks within a grid.

__global__ void add(int *a, int *b, int *c) {
int index = blockIdx.x * blockDim.x + threadIdx.x;

   c[index] = a[index] + b[index];
}
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Indexing Arrays with Blocks and 
Threads: The New “main”

● We can now use multiple blocks and threads
#define N (2048*2048)
#define THREADS_PER_BLOCK 512
int main(void) {

int a[N], b[N], c[N]; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size =  N * sizeof(int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Setup input values
a = random_N_ints(); b = random_N_ints();

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
// rest of the code on next page
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Indexing Arrays with Blocks and 
Threads: The New “main” cont’d

// continue from previous page

// Launch add() kernel on GPU with N blocks
 add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, 
d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;
}
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The Rational Of Having Threads
● Threads seem unnecessary

– They add a level of complexity
– What do we gain?

● Unlike parallel blocks, threads have mechanisms to:
– Communicate
– Synchronize

● For graphic processing, it usually required to 
communicate within a block
– Global communication is less common
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Thread Communications
● Threads within a block 

is scheduled by the 
GPU to run on SMs that 
are directly connected 
to the same “shared 
memory”

● Other synchronization 
mechanisms are also 
possible among these 
SMs
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An Example of Using Shared 
Memory: All-Reduction

● All reduction with sum: sum the values (of a vector) 
processed by the threads of a block, and save the 
sum into an output vector (similar to 
MPI_Allreduce)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Input Vector Index

threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23Output Vector Index

sum sum sum
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An Example of Using Shared 
Memory: All-Reduction Algorithm

● Idea of the algorithm:
– Copy the part of array that has to be summed into shared 

memory
– Each thread will then read the data from shared memory, 

sum them and store the result back to the out vector
● Why shared memory? Why not directly sum the 

values from vector?
– Each thread has to read all values to sum them
– It takes more time to read the values from main memory 

than from shared cache
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An Example of Using Shared 
Memory: All-Reduction Kernel

● The code for the kernel:
__global__ void all_reduce(int *in, int *out) {

int index = blockIdx.x * blockDim.x + threadIdx.x;
// allocate an array in shared memory

   __shared__ int temp[BLOCK_SIZE];

// copy one value into shared memory
temp[threadIdx.x] = in[index];

// sum all values up
int sum = 0;
for(int i = 0; i < blockDim.x; i++)

sum += temp[i];
   

// output the sum to out array
out[index] = sum;

}

__shared__ keyword 
declares a variable 
in shared memory
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An Example of Using Shared 
Memory: All-Reduction Kernel cont’d
● The code for the kernel:

Race condition: if some 
threads haven’t copied their
values then we cannot do
sum. We need a barrier
here.

__global__ void all_reduce(int *in, int *out) {

int index = blockIdx.x * blockDim.x + threadIdx.x;
// allocate an array in shared memory

   __shared__ int temp[BLOCK_SIZE];

// copy on value into shared memory
temp[threadIdx.x] = in[index];

// sum all values up
int sum = 0;
for(int i = 0; i < blockDim.x; i++)

sum += temp[i];
   

// output the sum to out array
out[index] = sum;

}
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An Example of Using Shared 
Memory: All-Reduction Kernel cont’d
● CUDA’s barrier is: void __syncthreads();

__global__ void all_reduce(int *in, int *out) {

int index = blockIdx.x * blockDim.x + threadIdx.x;
// allocate an array in shared memory

   __shared__ int temp[BLOCK_SIZE];

// copy on value into shared memory
temp[threadIdx.x] = in[index];
__syncthreads(); // barrier
// sum all values up
int sum = 0;
for(int i = 0; i < blockDim.x; i++)

sum += temp[i];
   

// output the sum to out array
out[index] = sum;

}
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Starting Kernels with Multi-
Dimensional Blocks/Threads

● If the block count and threads per block are 
integers when launching a kernel, the blocks 
and threads are organized as a 1D vector 
space.

● To launch 2D or 3D blocks and threads:
dim3  dimGrid(8, 32);  // a grid has 8*32 = 256 blocks
dim3  dimBlock(4, 5, 6); // a block has 4*5*6 = 120 threads
myKernel <<<dimGrid, dimBlock>>>(...);
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Dynamic Shared Memory
● In the previous example, we statically declared an 

array in shared memory
– i.e., the shared memory is allocated with a compile-time 

determined size
– Static shared memory allocation is usually limited to the 

case where block count and thread count are known 
before hand

● There are cases where block/thread counts are 
unknown at compile time, and the size of required 
shared memory is only known at run-time 
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Allocating and Using Shared 
Memory Dynamically

● The size of dynamically allocated shared memory are 
passed to GPU as kernel launch parameter 

● Dynamically allocated memory is declared in a kernel 
with extern key word
__global__ myKernel(...){

…
extern __shared__ int a[];
…

} 

Main(){
…
Mykernel<<<gridDim, blockDim, sharedMemSize >>>(...)
…

}
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A Note on the Shared Memory Size

● Shared memory has limited size. 
● If a shared object requires more memory than  

the physical size of the shared memory, the 
shared object has to be put in GPU global 
memory.
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Device and Host Key words

● __device__ keyword specifies a function to be 
invoked from and executed on GPU

● __host__ keyword specifies a function to be 
invoked from and executed on CPU

● A function can have both __device__ and 
__host__ keywords.

● __global__ keyword specifies a function to be 
invoked from CPU and executed on GPU
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Debugging GPU Programs
● “printf” works in CUDA sm20 and higher architecture 

models. 
● After executing a kernel, call CUDA APIs to check for errors

– cudaGetLastError
– cudaPeekAtLastError
– CudaGetErrorString

● CUDA-GDB provides debugging support with GUI on Linux 
and Mac

● NVIDIA has Nsight debugger for Visual Studio and Eclipse
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